
INTERNATIONAL SCIENTIFIC AND CURRENT RESEARCH CONFERENCES 
pg. 8 

INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN 

ENGLISH LANGUAGE EDUCATION 
 

PUBLISHED DATE: - 10-12-205 

PAGES: - 08-09 

 

CONFERENCE ARTICLE 

 
RANDOM NUMBER GENERATION IN MODERN COMPUTING 

 
 

Nuriddin Safoev 
Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan 

 

 

ABSTRACT 

Random number generation plays a crucial role in modern computing, especially in cryptography, simulations, statistical analysis, 
and secure communication. This paper reviews two major approaches to generating randomness: true random number generators 
(TRNGs), which rely on unpredictable physical phenomena, and pseudo-random number generators (PRNGs), which produce 
deterministic sequences through mathematical algorithms. While TRNGs offer high-quality entropy required for security-critical 
tasks, PRNGs provide speed and reproducibility for general-purpose applications. By examining their mechanisms, strengths, and 
limitations, this study highlights the importance of choosing appropriate RNG models for secure system design. 

Keywords: Random number generation, TRNG, PRNG, entropy, cryptography. 

 

INTRODUCTION 

Randomness is fundamental to a wide range of computational 
processes—from encryption keys and nonces in cryptography to 
statistical sampling and simulation modeling. A sequence is 
considered random when its elements are uniformly distributed 
and statistically independent, meaning no value influences 
another. 

Despite its importance, achieving randomness within 
deterministic digital systems is inherently challenging. As a 
result, operating systems and applications rely on two general 
categories of random number generators: 

• True Random Number Generators (TRNGs), which 
collect entropy from unpredictable physical events such 
as thermal noise or quantum fluctuations; 

• Pseudo-Random Number Generators (PRNGs), 
which produce algorithmic sequences derived from an 
initial seed. 

Modern systems often combine these approaches, using 
environmental entropy to seed cryptographically secure PRNGs 
(e.g., Hash_DRBG, HMAC_DRBG, CTR_DRBG). This hybrid model 
balances speed and security. 

This paper compares RNG mechanisms implemented in 
mainstream platforms such as Windows, Linux, and macOS/iOS, 
focusing on entropy collection, cryptographic components, APIs, 
and related security properties. 

In computing, randomness refers to both the unpredictability 
and uniform distribution of outputs. Two properties are 
essential: 

1. Uniformity – all possible outcomes should occur with 
equal probability, preventing bias. 

2. Independence – the result of one output must not reveal 
information about others. 

Bias or correlation in generated sequences can compromise 
simulations or, more critically, expose cryptographic systems to 
attacks. Therefore, randomness is evaluated using well-
established test suites such as NIST SP 800-22, 

Diehard/Dieharder, and TestU01, which assess statistical quality 
across various metrics. 

2. Types of Random Number Generators 

2.1 True Random Number Generators (TRNGs) 

TRNGs derive randomness from inherently unpredictable 
physical processes, producing non-deterministic output. Though 
their entropy quality is superior, they typically require 
specialized hardware and may operate at slower speeds. 
Common examples include: 

• Random.org – uses atmospheric noise as an entropy 
source; suitable for general tasks but not for cryptography due 
to network transmission risks. 

• HotBits – relies on radioactive decay; reliable but 
significantly limited in throughput. 

• Laser-based RNGs – exploit chaos in light oscillations, 
achieving extremely high speeds suitable for advanced 
cryptographic applications. 

• Oscillator-based RNGs – utilize clock jitter and are 
commonly integrated into TPMs and HSMs. 

Despite their strength, TRNGs may suffer from environmental 
interference or hardware degradation, requiring careful 
calibration and post-processing. 

2.2 Pseudo-Random Number Generators (PRNGs) 

PRNGs generate sequences using deterministic mathematical 
rules. Their output is reproducible when the same seed is used, 
which is beneficial for simulations but risky for security if the 
seed becomes known. Examples include: 

• Linear Congruential Generator (LCG) – simple but 
predictable, unsuitable for cryptography. 

• Lagged Fibonacci Generators – improved period length 
but still deterministic. 

• Mersenne Twister – high statistical quality with a 
massive period, though not secure against state-recovery 

 



INTERNATIONAL SCIENTIFIC AND CURRENT RESEARCH CONFERENCES 
pg. 9 

attacks. 

Table 1: Comparison of TRNGs and PRNGs 

Feature TRNG PRNG 

Source Physical phenomena Algorithmic, seed-based 

Speed Low High 

Determinism None Fully deterministic 

Security risk Hardware/environment attacks Seed leakage, algorithm analysis 

Use cases Cryptography Simulations, general computing 

4. Security Considerations 

RNGs are vital to the security of cryptographic systems. TRNGs 
provide high-entropy randomness but may be vulnerable to 
environmental manipulation or hardware failures. PRNGs 
depend heavily on seed secrecy—once exposed, all generated 

values become predictable. Historical issues such as the 
suspected backdoor in Dual_EC_DRBG underscore the need for 
transparent, peer-reviewed RNG designs. Security mechanisms 
such as regular reseeding, forward/backward secrecy, and 
hardware tamper-protection are essential for maintaining 
robust randomness. 

Table 2. Comparison of Security Aspects of TRNGs and PRNGs 

Aspect TRNG PRNG 

Predictability Very low High if seed compromised 

Environment dependence High Minimal 

Hardware needs Specialized General-purpose 

Cryptographic suitability Excellent Only with secure PRNG design 

Attack vectors Bias, hardware faults Seed guessing, algorithm weaknesses 

5. Conclusions 

Random number generation is fundamental to secure and 
reliable computing. TRNGs offer genuine unpredictability 
needed for high-security scenarios, whereas PRNGs provide the 
performance and reproducibility required for large-scale and 
non-security tasks. Due to complementary strengths and 
weaknesses, hybrid RNG architectures—combining physical 
entropy with cryptographically secure algorithms—represent 
the most practical solution for modern systems. Future research 
must focus on improving entropy quality, protecting RNG 
subsystems against emerging attacks, and developing more 
resilient cryptographic PRNG frameworks. 

References 

1. Chan, W. K. (2009). Random Number Generation in 
Simulation. 

2. Gutterman, Z., Pinkas, B., & Reinman, T. (2006). Analysis 
of the Linux Random Number Generator. 

3. Haahr, M. (2011). Introduction to Randomness and 
Random Numbers. 

4. Marsaglia, G. (2005). Random Number Generators. 

5. Schneier, B. (2007). Dual_EC_DRBG: A Case Study in 
Backdoors. 

6. Sunar, B., Martin, W., & Stinson, D. (2006). A Provably 
Secure True Random Number Generator. 

7. Barker, E., & Kelsey, J. (2015). Recommendation for 
Random Number Generation Using Deterministic 
Random Bit Generators (Revised). NIST Special 
Publication 800-90A Rev. 1. 
https://doi.org/10.6028/NIST.SP.800-90Ar1 

8. Eastlake, D., Schiller, J., & Crocker, S. (2005). 
Randomness Requirements for Security. RFC 4086. 
https://www.rfc-editor.org/rfc/rfc4086 


