INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN
ENGLISH LANGUAGE EDUCATION

PUBLISHED DATE: - 10-12-205
PAGES: - 08-09

CONFERENCE ARTICLE

RANDOM NUMBER GENERATION IN MODERN COMPUTING

Nuriddin Safoev
Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan

ABSTRACT

Random number generation plays a crucial role in modern computing, especially in cryptography, simulations, statistical analysis,
and secure communication. This paper reviews two major approaches to generating randomness: true random number generators
(TRNGs), which rely on unpredictable physical phenomena, and pseudo-random number generators (PRNGs), which produce
deterministic sequences through mathematical algorithms. While TRNGs offer high-quality entropy required for security-critical
tasks, PRNGs provide speed and reproducibility for general-purpose applications. By examining their mechanisms, strengths, and
limitations, this study highlights the importance of choosing appropriate RNG models for secure system design.

Keywords: Random number generation, TRNG, PRNG, entropy, cryptography.

INTRODUCTION

Randomness is fundamental to a wide range of computational
processes—from encryption keys and nonces in cryptography to
statistical sampling and simulation modeling. A sequence is
considered random when its elements are uniformly distributed
and statistically independent, meaning no value influences
another.

Despite its importance, achieving randomness within
deterministic digital systems is inherently challenging. As a
result, operating systems and applications rely on two general
categories of random number generators:

. True Random Number Generators (TRNGs), which
collect entropy from unpredictable physical events such
as thermal noise or quantum fluctuations;

. Pseudo-Random Number Generators (PRNGs),
which produce algorithmic sequences derived from an
initial seed.

Modern systems often combine these approaches, using
environmental entropy to seed cryptographically secure PRNGs
(e.g., Hash_DRBG, HMAC_DRBG, CTR_DRBG). This hybrid model
balances speed and security.

This paper compares RNG mechanisms implemented in
mainstream platforms such as Windows, Linux, and mac0S/i0S,
focusing on entropy collection, cryptographic components, APIs,
and related security properties.

In computing, randomness refers to both the unpredictability
and uniform distribution of outputs. Two properties are
essential:

1. Uniformity - all possible outcomes should occur with
equal probability, preventing bias.

2. Independence - the result of one output must not reveal
information about others.

Bias or correlation in generated sequences can compromise
simulations or, more critically, expose cryptographic systems to
attacks. Therefore, randomness is evaluated using well-
established test suites such as NIST SP 800-22,

Diehard/Dieharder, and TestU01, which assess statistical quality
across various metrics.

2. Types of Random Number Generators
2.1 True Random Number Generators (TRNGs)

TRNGs derive randomness from inherently unpredictable
physical processes, producing non-deterministic output. Though
their entropy quality is superior, they typically require
specialized hardware and may operate at slower speeds.
Common examples include:

. Random.org - uses atmospheric noise as an entropy
source; suitable for general tasks but not for cryptography due
to network transmission risks.

. HotBits - relies on radioactive decay; reliable but
significantly limited in throughput.

. Laser-based RNGs - exploit chaos in light oscillations,
achieving extremely high speeds suitable for advanced
cryptographic applications.

. Oscillator-based RNGs - utilize clock jitter and are
commonly integrated into TPMs and HSMs.

Despite their strength, TRNGs may suffer from environmental
interference or hardware degradation, requiring careful
calibration and post-processing.

2.2 Pseudo-Random Number Generators (PRNGs)

PRNGs generate sequences using deterministic mathematical
rules. Their output is reproducible when the same seed is used,
which is beneficial for simulations but risky for security if the
seed becomes known. Examples include:

. Linear Congruential Generator (LCG) - simple but
predictable, unsuitable for cryptography.

. Lagged Fibonacci Generators - improved period length
but still deterministic.

. Mersenne Twister - high statistical quality with a
massive period, though not secure against state-recovery
pg- 8

INTERNATIONAL SCIENTIFIC AND CURRENT RESEARCH CONFERENCES



attacks.

Table 1: Comparison of TRNGs and PRNGs

Feature TRNG PRNG
Source Physical phenomena Algorithmic, seed-based
Speed Low High
Determinism None Fully deterministic
Security risk Hardware/environment attacks Seed leakage, algorithm analysis
Use cases Cryptography Simulations, general computing

4. Security Considerations

RNGs are vital to the security of cryptographic systems. TRNGs
provide high-entropy randomness but may be vulnerable to
environmental manipulation or hardware failures. PRNGs
depend heavily on seed secrecy—once exposed, all generated

values become predictable. Historical issues such as the
suspected backdoor in Dual_ EC_DRBG underscore the need for
transparent, peer-reviewed RNG designs. Security mechanisms
such as regular reseeding, forward/backward secrecy, and
hardware tamper-protection are essential for maintaining
robust randomness.

Table 2. Comparison of Security Aspects of TRNGs and PRNGs

Aspect TRNG PRNG
Predictability Very low High if seed compromised
Environment dependence High Minimal
Hardware needs Specialized General-purpose
Cryptographic suitability Excellent Only with secure PRNG design
Attack vectors Bias, hardware faults Seed guessing, algorithm weaknesses

5. Conclusions

Random number generation is fundamental to secure and
reliable computing. TRNGs offer genuine unpredictability
needed for high-security scenarios, whereas PRNGs provide the
performance and reproducibility required for large-scale and
non-security tasks. Due to complementary strengths and
weaknesses, hybrid RNG architectures—combining physical
entropy with cryptographically secure algorithms—represent
the most practical solution for modern systems. Future research
must focus on improving entropy quality, protecting RNG
subsystems against emerging attacks, and developing more
resilient cryptographic PRNG frameworks.

References

1. Chan, W. K. (2009). Random Number Generation in
Simulation.

2. Gutterman, Z., Pinkas, B., & Reinman, T. (2006). Analysis
of the Linux Random Number Generator.

3. Haahr, M. (2011). Introduction to Randomness and
Random Numbers.

4. Marsaglia, G. (2005). Random Number Generators.
Schneier, B. (2007). Dual EC_.DRBG: A Case Study in
Backdoors.

6. Sunar, B., Martin, W., & Stinson, D. (2006). A Provably

Secure True Random Number Generator.

7. Barker, E., & Kelsey, ]. (2015). Recommendation for
Random Number Generation Using Deterministic
Random Bit Generators (Revised). NIST Special
Publication 800-90A Rev. 1.
https://doi.org/10.6028/NIST.SP.800-90Ar1

8. Eastlake, D. Schiller, ], & Crocker, S. (2005).
Randomness Requirements for Security. RFC 4086.
https://www.rfc-editor.org/rfc/rfc4086

INTERNATIONAL SCIENTIFIC AND CURRENT RESEARCH CONFERENCES

pg. 9



